”~

DATE:

TG+

FROM:
SUBJECT:
REFERENCE:

KEYWORDS:

R€buirements Spec for the Prime I/0 System (PIOS) PE-TI-990

August 54 1982

R & D Personnel

Garry Kessler

Requirements Spec for the Prime I/0 System (PIOS)
PE-TI-989 (Prime I/0 System)

PIOS, OSAGs PDAs streams, input/output, device independence

ABSTRACT

The new Prime I/0 System (PIOS) will rewrite the current I/0 system to
include the following features:

I1/0 redirectability and device independence
abstract objects

generalized name space (linkssy search Llists)
record I/0

simple IPC primitives

This paper presents the goals and requirements of PIOS.

’F-

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI-990

Table of Contents

Executive SUMMAaryeoesesecsecccscoscceccoosscsscesssacscccscscccossscsoscssssosnasosssl

Glossary..............Q...................‘...'.......................5

1

2

3

Motivation..........................oo-....................-......o.9

.Goals‘..."..l.................0.....0......O..O‘....“...I........ll

ompetftive SUMMBPYG.Q..-oo-oooooooooooooooooooo.oooc.ooo.o-.ooo-oolz
el Summary of Features DiscusSedecsscecoscocoocsacscsccscscsccoscssncnel?
«2 Hierarchical Name SPaCCesesccscecscosscsscscsecscsscncncscscosnsosssll

Generic Files.......ooooo.ooooooo.oooao.coo.o.o.oooo.000.00000013

4 Name Space conVEﬂtiOnSooooocooo.o.ooocoooo-oooooo0000000000000014

Access Control......-.............-...........-................14

I/O ObjeCtSO...C...OCOGO...0.'.".........'...........0.0...'..15

3

]

6 Connections.................-....................---o------....lS
7

8 Types of I/O............-............-.........................15
Q

c
3
3
3
3
3
3
3
3
3«2 More on Record I/O...o..............o.-..............-...--....16
Jel0 Primos DPfiCienCi85¢anoocc.o.ooooo.o-nooc-ooooo..oo0000000000018

Overview......................-....................................19
4,1 Characteristics of pIOSo.0.00..0.0..0..000.0.o.o.onooo.....oo..lg
4.2 The User®s Viewpoint..................-..o--...-.-.-...........ZU
4,21 Abstract Objects...20
4.22 Name Space Operations...o......o...................-.....21
4,23 Stream Operationso...................................0-0-22

44244 ExamDLES..-............--.............-.-........'.-.....22

Requirements-.............o..--o....................-...-...-......25
51 I/O-ooo.oooooooo'o.oooocoooo-ooooooo-.ooooooo..oo.o.ooooo.ooooozs
Se¢lel Name Space...................-....-.............-........25
56162 Stream Operations..27
56163 Types of I/O.ooooooooooooooo..ooo-oo..oooooooo0000000000027
5¢1¢3«1 Common I/0 OperationSoooooooa..co.oo..00000000-0027

Selede2 Record I/Oooo.-o.coooooo.ooooooo-.o.oc0300000000‘28

S5¢1¢3e3 Block I/Oooc.o.-oooo.oooo.oooooo.--ooo.oooooc.ooozs

Seleldat Unpended I/Oocoaooooo.oocooooo-.n..oo.oooocooooo.Qg

5«2 Ease of Usenoco.oo....ooooocooo'o.oooo.o.o-oaoaocoo.ooo-.oooooozg
563 CompatibiLity.ooc.o.oooooo-o.ooooooooooooooooo.ooooo0000.00000029

Se4 Access ContrOL....0........0...00....Q.Q..O-...............00.030

PDRIME DR D CTDYATEN - .

Requirements Spec for the Prime I/0 System (PIOS) : PE-TI-990
“N

Error Reoorting-.................-...........-.................30
System Startup and Configurability....-..............oo........SO
Implementation.....................--..........................30
ExtenSibilitY and portabitity.ooo.ocoooco000000000000000000000.32
Database Management..32

(G RNG S NSRS)]
VooONOO

6 Comparison of PIOS with CompetitiOoNececsccccecsccscscccssscconcoccsseld

7 Dependencies........o.......-..............-.......................35
8 NO”-FEQUirementSoocoo-coooooooooooooo..ooo.ooooocooooocooooooo.ooooSB

ISSUGS..oo--oc-ooouoo-oo.c.cooooooooooooooooooooo-oqoo.o0000000000039

™IS T aAr MmO ™ ST YT AT ™ . . -

o~

~

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

Executive Summary

The Prime I/0 System (PICS) Project proposes to rewrite and enhance
the following areas of Primos:

file system tables and access methods
input/output at all Llevels

dependency on particular CPU architecture
access control

name space management

O 0O 00O

This project will also support the following architectural changes:

o0 DSAG service oriented environment (PDA - Prime Distributed
Architecture)
o distributed file system intelligence (eege smart disk

controllers)
o portability of Primos to other CPU families (fe.e. isolation of
machine dependent code)

In additiony PIOS will add to Primos features offered by Prime's
competitorss and thereby 1improve Prime®s position in the marketplace.
These features include:

I/0 redirectability
device indepenrdence
recorc I/0

uniform I/0 interface
support for Language I/0

O 0O o000

PIOS is a major rewrite of the Ring 0 part of the operating systeme
Rewriting is more cost effective than patching because of the extent of
the changes requireds and the dintractability of the existing code.
Since the 1/0 system accounts for a very large percentage of operating
system bugs (70% for Reve 19 - cfe PE-TI-989), restructuring the system
should result in a significant dimprovement in reliability and
maintainability.

Compatibility will be assureds no software other than Primos and
its utilities is required to change. Since many of the changes are
being made for the benefit of other software (e.ge device-independent
I/0 for Llanguages) commitments from other groups will be needed to put
the new features into use.

PRIMF RNorC pRrreTDYIATCA -~ .

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

Glossary

Here we define terminology used in this specificatione. Underlined
words indicate terms that appear elsewhere in the glossary.

Abstract object - A named set of data and operationse. The operations
defined on the data can include conventional ones like read and
writey as well as ones of arbitrary complexity defined by the
users the operations also 1dnclude access control informatione.
Examples of objects are filesy devicesy and services; all IZ0 is
done to/from objects. There are three kinds of objects: simple
objectss composite objectss and generic objectse.

Aliasing - The ability to temporarily redirect the target of an 1/0
operation from a "hard-wired" glotal name to some substitute
targety as for debugging purposes. In PI0S, aliasing 1is done
using the associate stream operation.

Association - To associate two names is to relate or connect them in
preparation for doing 1I/0; associating names is the first step
to defining a stream. The names associated can be two local
namesy a Llocal name and a global _namesy or two global names
(aliasing)e ALl associations are Localsy i.eey process-specific,

This notion 1is more general than the usual one of connectione
since any two names can be associatede.

Asynchronous 1/0 - See unpended 1/0.

Block I/0 - An I/0 interface that typically transfers data by reference
rather than by value (no copy mode I1/0). No formatting of data
into records is done.

Composite object - An object which contains more than one object within
itself; the internal objects are called subobjectse A composite
object could be used when a number of objects are Logically
equivalent (ee.ges servers in a service)ls when the dnternal
structure of objects must be hidden from wusers (ee.gey certain
Data Management objects)y or to conglomerate many small objects

into one Llarge onee.

Connection - An association between a generic file known to a process
and a resource known to the systeme A Lless general notion than
associationy since one end must be a lLlocal namee.

Device independence - The ability to use a single interface to perfornm
170 to all types of objectse This allows programs to be written
which do not depend on the peculiarities of any particular
devices See 1/0_redirectability.

MO TWVrE o Bl N = " TEO TATEMN | & NP -

Reaquirements Spec for the Prime I/0 System (PIOS) PE-TI1-990

’

Distributed system - A distributed system has many units capable of
vary ing degrees of computation and data storage. Each unit is
independent of all others in that units do not share main memorye.
ALL units are interconnected in such a way that users need not be
aware of discrete resources or system topology. Rathers they
perceive the system as a set of services for information storage,
retrievales and modificatione.

File elements - A file system feature which allows files to be stored
on contiguous areas of disks for efficient 1/0.

Filter - A kind of stream which performs a transformation on the data
which passes through it, A filter 1is associated with a

particular target in a stream and specifies how data entering the
target is to be transformed;s in this sense it is an association
from a target to {itself (a Loop).

Fork - A special association which allows one end of a stream to be

split into two partsy thus sending the data to two different
dest inations.

Generic file - A local (process-specific) _name used to refer to global
names to provide 1/0 redirectability.
-
{ Generic object - An object whose name is in the local name_space of a

process, A generic object is used as an I/0 port: the physical
or lLogjcal resource it is related to can be redefined by a
process in order to redirect 1/0.

A generic object 1is a more general notjon than a ceneric file,
since access control and non-standard operations can be defined
on an object.

Global name - A name in the hierarchical__name__space which §s known
across all processese.

Hierarchical name space - A name space in which names are organized
into a vertical (hierarchical) structure as well as a horizontal
(flat) structure.

The name space seen by a process Js divided into glcbal'names and
local_names. When a global name is the same as a local names the
local name is given preference,

170 redirectability - The ability to change the source or sink of an
I/0 operation without modifying an existing programe 1In a fully

general I/0 systemy this ability {is available even for programs
which do not wuse a device independent interface (fe€e9 which

~ refer directly to physical resources)e. This Last ability is
known as aliasing. General redirectability is provided by the
assocjation operatione.

PRIMF RNLF RFRTRICTEN O .

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-99¢

I/0 system - That portion of the operating system that enables users to
locate and use non-main memory storage and communications
resourcess it includes facilities to jidentifys shares use and
manage a system®s I/0 resources.

Links - File names that point to other file names instead of datas

Local name - A name which is known only to a particular process.

Object - See abstract obiject.

Naming service - A service which manages the hierarchical name spacee

Open - Operation which defines the direction of flow and the Logical
access of data 1in a gstreams completes the definition of a
stream,

PDA - Prime Distributed Architecture. A distributed operating _system
currently under developmente

Record I/0 - An I/0 interface that performs data blockingy unblocking
and formatting functions for the user.

Search lists - Lists of directories to lLook for namese A search list
is @ List of "hints" to a naming servicee.

Server - One of a set of processes which implements a servicee

Service - A set of processes (servers) which insulate users from the
physical characteristics and Location of a resource. A service
is implemented as an abstract objects so that data can be
transferred between it and & wuser process using the same 1/0
interface used for all objectse A service <can be used to
implement a set of operations on other abstract objectse

Simple object - An object which does not contain subobjects.

Sink - Object to which data flows in a stream; data is written to the
sink.

Source - Object from which data flows in a gtream’3 data is read from
the source.

Stream - An I/0 stream is a logical conduit through which data flowse
To define a streamy a user must specify the 1/0 objects in the
path of the streamy the direction of the data flowsy and the way
the data 1is to be read/written. The path is defined by
associating the objectst? the direction of flow and the Logical
access is defined by opening the stream,

MO TME- N DO TDY I TrErMN [o PRy -

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI~S90

'

Subobject - An object which is part of a composite object. A subobject
may also be ccmpositee.

Target - Either end of an association’s a source or a sinke.

Unpended I/0 - An I/0 interface that permits overlapping of I/0 and CPU
times (aka asynchronous 1/0).

PRIME RNMNSFEF DCECCTDYATYTEN - ~

Requirements Spec for the Prime I/0 System (PIOS) PE-TI=-990

1_Motivation

iy

The 1/0 system is that portion of the operating system which enables
users to Locate and use non-main memory storage and communications
resourcess it includes facilities to identify, sharey use and manage a
system?s I/0 resourcese The current I/0 system has several
inadequaciess all of which can be attributed to its haphazard design
and implementation:

0 Lack of features offered by our competitors: 170 device
independencey redirectability, file elementsy and record
management support for fixed and varying lLength records are common
operating system features among our competitorse (File elements
are a file system feature which allows files to be kept on
contigcuous disk records for efficient 1/0.) Prime lacks these and
is at a competitive disadvantage.

In additionsy the lack of support for Llanguage 1/0 causes extra
layers of software to be produced and obscure code to be written,
increasing an already high maintainance Load (see below)e

o The system is difficult to use and understand. This shows up in
misleaeding terminologys the existence of obsolete features, and
the definition of assymetric operationse. For examples although
segment directories are called directoriesy operations that can be
performed on them are very different from those that can be
performed on a UFD or sub-UFDe. 1In additiony segment directories
were introduced to fill a need for objects that function somewhat
Like directories but are large. In a file system which allows
large directories and filesy such a special case would not be
neededs Another place where assymetry shows up is 1in obtaining
the Length of a files getting the Length of a SAM file 4s a much
more expensive operation than for a DAM file because the length of
a SAM file is not stored in the file header. Such a disparity is
unnecessarysy inconsistent, and inefficient.

A final example s the use of highly encoded physical device
numberse To add a disk to the systemy the wuser must know the
number of platters din the partition, the controller the drive is
ony and the device number of the drive; he must then <correctly
encode this dinformation 1into the physical device number. The
difficulty of use is bad enoughs but this procedure also results

in resource Llimitations: Prime machines cannot handle more than
two disk controllers for the simple reason that only a single bit
is reserved in the physical device number to specify the

controller. Prime machines are Limited in the size of partitions
because of the number of bits allowed for the number of platters
in a pertitions As a resulty a full 600Mb disk cannot be used as
one partitions These restrictions are unacceptablee.

™~ T aa r— -~ N oA - NP om W PN T PR W P -~

~

Requirements Spec for the Prime I/0 System (PIQS) PE-TI-990

o Lack of full transparencye. Users must be aware of network

topolcgy when performing some operations. For examples accessing
a remote file can fail even though the machine on which it resides
is on the user®s network3 this can happen if the partition has
not been explicitly added to the user®s machine. The requirement
that the operator explicitly add remote disks to network nodes was
intended as a security feature3 however this feature often gets
in the way more than 1t 1is wusefuly and attempts to handle a
secur ity problem outside of Prime*s official security mechanism
ACLse For consistency all security features should be implemented
under one mechanisme.

The system is not easily debugged or modifiede On the order of
2/3 of all bugs reported are in the I/0 system (cf, PE~-TI-989).

Inflexibility - Many soft resources are statically allocated at
system startups reconfiguration requires a system reboot. This
makes 1t difficult to customize a system to user needse. It also

places an added burden on developers who must do frequent reloads
and rebootse.

DDTYTME DRNOIE NN TME T /e o B P

Reauirements Spec for the Prime I1/0 System (PIOS) PE-TI-990

2_Goals

The overall goal of PIOS s to remove the dnadequacies of the
current I1/0 system and dimprove Prime®s competitive position,
Specificallyy PIOS will:

o Lay a foundation for PDA (Prime Distributed Architecture)e.

0 make the system easier to use,

o make the system more extensible and portablee.

0 add new features (e.gs device independencesy I/0 redirection)e.

0 provide support for intelligent devices tintelligent disk
controtlery I/0 processor)e,

o maintain compatibility with existing commands.
o improve maintainability and reliability.

o provice support for database management products.

Requirements Spec for the Prime I/0 System (PIOS) PE-TI=-990
~

3 Competitive Summary

Three systems were chosen as representative of the marketplace in
which Primos competese. Data General's A0S and Digital®s VAX/VMS are
Prime®s most consistent competitors. Bell System®s UNIX is included as
a widely accepted operating system in academic environmentse ALl three
offer I/0 systems superior to Prime®s.,

An I/0 system allows users to identify, sharey usey and manage a
system®s I/0 resourcese This section discusses competitive offerings
in the first three areas and only touches on resource management since
such issues are implementation oriented.

3.1 Summary of Features Discussed

¢ hierarchical name space
A conveniently structured way for referring to 1/0 objects
(filesy devicesy and services)e

o0 generic files
~ A set of Local (process-specific) names used to refer to 1I/0
objectse.

0 shorthand methods for referencing long names
Methodologies for hiding the real names of objects and for
reducing typinge.

o security and access control
Limiting access to objects.

o sophisticated connection capabilities
Associating names for the purposes of doing I/0.

0 one I/0 interface for all objects
Using connections to perform I/0 on a variety of objects without
concern for peculiarities of specific objects.

o record I/0
An 1/0 interface that performs data blockingy wunblocking and
formatting functions for the usere.

D TM® PN M TS P N o W gy e g e -

Reauirements Spec for the Prime I/0 System (PIOS) PE=-TI-990

o block I/0
An I/0 interface that typically transfers data by reference
rather than by value (no copy mode I/0).

o unpended I/0
An I/0 interface that permits overlapping of I/0 and CPU times
(aka asynchronous 1/0). .

3.2 Hierarchical Name Space

Systems associate names with resources so that resources may be
easily identified and usede A hierarchical name_space is one in which
names are organized into a vertical (hierarchical) structure as well as
a horizontal (flat) structure. Naming hierarchies are desirable
because they are flexibley uniform and easy for users to lLearn and use.

Names are arranged in a hierarchy in all three systems. Devices are
members of a distinguished directory near the top of the hierarchy.
Generally some special character (or <character sequence) is used to
identify the distinguished directoryy such as the *a* in @CONC for the
AOS system <consoles Both AOS and VAX naming hierarchies include
network node names at their top levels; UNIX does not.

The AOS naming hierarchy has an additional unique featuree. It
allows whole subtrees (ieeey other disks) to be inserted and removed
anywhere below the top level of the hierarchy. VAX/VMS permits this
only at a single point near the top of the hierarchye

33 _Generic Files

Names are ultimately resolved to resources by the operating system.
Different systems wuse a variety of mechanisms for resolving namese.
Howevers the concept of generic files is common among them.

Generic_files are a set of names that are private to a processe The
process may associate devicesy files or services with generic filese
When the process performs I/0 on a generic filey the 1/0 is performed
on the associated devicey file or service. This insulates the process
from specific knowledge of 1/0 objectsy and allows I/0 bindings to be
made at run time rather than at coding time. Deferring bindings makes
programs more flexible.

(el VE o TN ™SO 7TMM Y /ATHEeM™ ™ e o o .

Reguirements Spec for the Prime I/0 System (PIOS) PE-TI-990

~

The various systems support different generic files as standarde.
UNIX supports generic files for input and output. AOS supports generic
files for inputs outputy data and liste. VAX/VMS supports generic files
for inputy outputs errors command inputs command source and librarye.
The tradeoff here s simplicity (few files) versus control (many
fiLeS)o

Generic files may be connected to other generic files for ease of
use. For examplesy dinteractive wusers have process input and output
assigned to a console file, The <console file 1is assigned to the
terminal. This extra Level of dndirection through the console file
permits users to conveniently redirect both dinput and output by
redirecting the consolte file.

In addition to the standard generic filesy VAX/VMS allows users to

make up their owny and provides an extra layer of insulation with an
alias facility (lLogical names)e.

3e4 Name Space Conventions

UNIX and AQOS provide some name space conveniences in the form of
M Links and search lists. Links are file names that point to other file
names as opposed to data. Search Lists are Llists of directories to
Look for nramese. VAX/VMS does not have search lists and this is a
weakness., In generaly, howeversy all systems provide some mechanisms for
abbreviating and hiding resource names. These mechanisms can be used

to build complex name space structures (more complex than trees)e

3.5_Access _Control

ALl systems include mechanisms to control access to resources by
controlling access to their namese. ACOS wuses access control Llistse.
VAX/VMS uses a variant of access <control lists and Bell UNIX wuses
passwords. Access control Lists (ACLs) are preferred over passwords
because they are easier to wuse and provide more flexibility and
security. With ACLs complex access controls can be defined. Specific
users or groups of users can have different subsets of operations they
are allowed to do. With passwordsy knowing the password gives you all
accesse

DR TITME D9 DOCCOTDDYTALATYTEDN -~ -« s

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI-950

3+6_Connections

A connection is an association between a generic file known to a
process anc a resource known to the system. The association gives the
process access to the resource through the generic filee. The concept
of establishing connections is fundamental to I/0 systems that use
generic files and is found in all the systems discussed heres

AOS and VAX/VMS support only simple connections while UNIX supports
some more sophisticated constructs known as forks and filters. Forks
are specialized connections that permit a single generic file to be
associated with multiple system resourcese. This dis usefuls for
examplesy in making multiple copies of an output file. Eilters are also
a specialized type of connectione They perform transformations on data
that pass through them. An example might be an ASCII to EBCDIC
conversion filter. Sophisticated connections are desirable because
they provide users with increased flexibility in the I/0 system which
makes more complex problems easier to solve.

37 1/0 Objects

1/0_objects are system resources that are available to wusers to
perform input or output operations. In A0S and VAX/VMS, devices, files
and server processes are all potential I/0 objectss In UNIX devices
and files are I/0 objects? processes are avajilable 4in some extended
UNIX systems. Having one connection mechanism work with a wide variety
of I/0 objects produces systems that are consistenty flexible and easy
to uses wusers need to learn only one interface.

In UNIX and A0S objects are divided 1into two <classesy character
class and block classe. Typically this distinction reflects the
inherent capabilities of the objectss Character objects perform 1/0 a
character at a times Block objects may perform I1/0 many characters at
a time,

38 Yypes_of 1/0

Three broad types of I/0 operations are offered in the systems
discussed here. ALL transfer data between user processes and system
resourcese

In record I/0 data is transferred in units of lLlogical recordss one
record at a times This mode of 170 is directly accessible via language
I1/0e O0f the I1/0 modes discussed heres it is the most sophisticateds
it provides users with a Llogical record 1interface which performs
required data blockingy unblocking and reformattinge Record 1I/0
corresponds to the I1/0 model found in many high level languagess.

™ ™ YT a2~ ~ ™ - NS P ™ VIS T /ST M ™ o~ o o - ™

Reguirements Spec for the Prime I/0 System (PICS) PE-TI-9990

~

In block I/0 data is transferred in arbitrary sized chunks or
blocksy one block at a timee In this case no restructuring of the data
into logical records 1is performeds This mode sacrifices some of the
functional ity of record I/0 in order to improve performance. Typically
block I/0 is a no copy I/0 mode where data 4is passed by reference
rather than by value. Obviouslys block I/0 is advantageous when the
record structure of the data is not of interest and record formatting
overhead would be wastede Bulk copying is such an applicatione

In unpended_1/0 more than one request for data transfer may be
outstanding at the same time (aka asynchronous I/0). In other words a
process need not wait for one request to complete before {dssuing
another. This mode is used to overtap I1/0 times with CPU timese Bulk
store backup applications are users of unpended 1/0. Unpended I/0 can
be used on both records and blockse.

VAX/VMS offers all three types of I/0. A0S does not offer unpended
170 directlyy but the effect may be obtained via multitaskinge UNIX
offers only block mode 1/0. The claim is that users do not need the
generality of multiple record types. The tradeoff among all of the
systems is flexibility and performance versus complexity.

P 3.9 _More _on_Record _I/0

Record I/O provides users with the greatest idinsulation from the
peculiarities of idndividual 1/0 objects, The system performs
formatting operations on the data automaticallys users see data in
units of standard Llogical recordses Both VAX/VMS and AOS use recordse
UNIX permits only one record type (dynamic3 see next paragraph).

Records have a variety of types distinguished by how their Llengths
are established. Dynamic_records have lengths that are specified with
every read or write. Both UNIX and A0S support them. A0S supports
three other record types as well. Fixed _Llength _records have a
predefined, but settabley common length. Varizble length records have
their lengths encoded at their beginnings (32 bits). Delimited records
are terminated by a special <character (settable). VAX/VMS supports
fixed and variable records and a hybrid type called variable with fixed
control. Table 1 summarizes the record types supported by each systeme

Support for a variety of record types is a convenience for languages
and applications. Langcuage specifications dictate the need for varijous
record typese Furthermorey it should be possible to read data with a
record type that is different from the type with which it was written.
This is possible under both A0S and VAX/VMSs but with different
results., '

DRIMFE DNRASE oroeToTrrTeCN : [o RN P

Requirements Spec for the Prime I/0 System (PIQS) PE-TI=-990
-~

Systenm

AOS i VMS | UNIX
| | .
Dynamic | yes | no | yes |
R I | | |
e T Fixed | yes | yes] no |
c vy | | ! |
o p Varying | yes | yes i no]
r e | - | =
d Delimited| yes | no | no |
| I - ! |
Hybrid | no | yes | no |
I | | |

Table 1: Record Types Supported

VAX/VMS strictly adheres to the record type of objectse An attempt
to read an 80 charactery fixed length file as a 40 charactery, fixed
Length file will result in a truncation of the second 40 characters in
each records This allows shorty fixed size buffers to be used when the N\
desired data is towards the beginning of the recordse

record 1 record 2
| 40 chare / 40 chare | 40 chare / 40 char. |
read skip read skip

A0S acheres to record types of objects more loosely. An attempt to
read the same 80 charactery fixed length file 40 characters at a time
will result in successive reads of 40 characters sequentially reading
atl of the data 1in the file. This allows for the reading of objects
with fixed sized buffers without regard to the true type of the objecte.

record 1 record 2
| 40 chare / 40 char. | 40 chare / 40 chare. |
read read read read

™™ Tar (ol ol ol Y™ &SI T AT PN o o om < -

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

~

3410 Primos Deficiencies

o Hierarchical name space
The Primos file system is a hierarchical name space. However,
it Llacks the generality and conveniences of VAX/VMSs AOSs and
UNIXe The hierarchy does not include network nodes or system
devices. Shorthand conveniences such as Llinkse synonyms and
search lists are ejther not provided or have only recently been
introduced.

o Generic files
Primos has no support for generic files.

o Security and access controt
Primos is improving its access control mechanism for filese The
ACL mechanism at Prime is superior to those on other systems 1in
that group names are supported.s Howevery there 1is no access
control on devices; services are not supported.

& o Connection capabilities
Primos has no connection capabilitiese.

0o One I/0 interface for all objects
Primos does not support {interchangeable access to files and
devices. Language Llibraries do provide some support 4in this
areas but they require active use on the part of the application
as opposed to being a feature of the system provided for free.
Thereforey applications typically do not support interchangeable
accesss to objectse.

Much I/0 is done by direct calls to I/0 driverse. This results
in a different and often obscure interface for each device, and
causes maintainance and ease of use problemse.

There is no service process support in Primose

o Record 1I/0
There is no record I/0 support in Primose Languages do
implement record 1/03% howevers there is no guarantee that a
file written with one lLlanguage can be read with another.

#/~ © Block I/0 and Unpended I/0
‘ Block I/0 is supported by Primos and is not a major deficiencye
Unpended I/0 is supported only for tapes.

ODIME pDNMNolC DT Yrvrm™ L P

Requirements Spec for the Prime I/0 System (PIOS) PE-TI=-990

4 Qverview

In this sectiony, we present an overview of PIOS from a user
viewpoint. The term "user" is purposely left ambiguous; it may range
from a non-programmer all the way to a sophisticated systems
programmere.

4¢1 Characteristics_of PIOS

1. Device-independent 1/0

PIOS provides one interface to perform all input/output functions
to all types of I/0 objectses This dinterface c¢an be used by
compiled code <(to do Language 1/0)y or by application programs
directlys The source/target of the I/0 can be changed for any
run of the programy without modifying the codee.

The source/sink of the 1I/0 can be a PDA servicey allowing a
service oriented environment to be integrated into programs and
programming languages in a natural waye A service is a set of
processesy Oor serversy which performs dinformation retrievaly
storagey or transformatijon while dinsulating the user from the
physical characteristics and location of the actual resourcess

2+ I/0 Redirectability

Besides providing a device-independent 1/0 interfaces PIOS allows
a user to redefine the source and target of any 1/0 operatione.
This is done by "connecting" a conduit or stream to the source or
target desired. PIOS provides a uniform facility for Llocating
Local or remote filesy devicesy and servicese The ©program will
not need to concern itself with how this is donee.

3. Hierarchical Name Space

Ne Be: This part of PIOS has very strong dependencies on the
design efforts of DSAGS <cf. the section on "Dependencies™,

PI0OS provides a tree structured name space that will be similar
to today®s system in most waysse though its internal structure
will be redesigned.

The naming and configuration of media will be 1improved over
today*s octal partition numberse In particulars any source/sink
for information will be named.

. e % A A e [— o P e o n N = p— -

ﬂ

' &

”~

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

The PIOS name space will 1dinclude devices and servicese. AlLL
extensions will be consistent with any name space design produced
by DSAG.

Users will use name space operations to create, delete and modify
the attributes of I/0 objectse.

4, Access Control

PIOS will provide a high Llevel of access control over all
objectse This <control will be compatible with the current ACL
mechanism., The goal here is to ensure that data or services
cannot be accessed by unauthorized persons.

5« Portability

Device dependent code will be isolated and a device independent
interface developedy so that alternative media such as
intelligent disks can be simply "plugged in" to the rest of the
systeme Isolating hardware dependent codes and defining clean
interfaces to this <code will facilitate migrating Primos to
future processorse.

4.2 The User®s Viewpoint

This section describes at a high Level how PIOS might be used. It
is intended to give a feel for the way PIOS "fits together™ at the user
Levels Some assumptions have been made about how PIOS will be
implementeds these assumptions may not hold in the final design of
PICSe.

ALL I/0 is done from and to abstract objects. Objects are defined
using name__space _operationsy and the datapaths used to do I1/0 are
defined using stream operations.

4.2.,1 Abstract Objects

The source and sink for any 1/0 operation <can be any abstract
object; this is the central concept of PI0S. An abstract object is a
named set of data and operationse. Filesy devicess and services are all
examples of abstract objects.s Objects having arbitrary operations and
ettributes can be defined using PIOS operationse. The operations

M defined on the object can 1include conventional ones Llike read and

iritey as well as ones of arbitrary complexity defined by the users
the operations also include access control information. This kind of
very general control over data manipulation is similar to the Language
concept of abstract data types. Using one interface for object
definition and access control results 4n a very general and flexibley

DO TME DODNRoer DT YrrETrmM™ ~ - ~ N

Requirements Spec for the Prime I/0 System (PIOQS) PE-TI-990

yet simple mechanism.

The name of any object can be either global (system-wide) or Llocal
(process-specific)e Global_ objects have their names in a global name
space; Local objects are known only to the process that created theme

There are three kinds of objects: simples generice and composites
A simple object is one which does not contain other objects as its data
portions it 1is a single named set of data and operationse A file is
an example of a simple object; the contents of the file are the data
part of the object and the operations defined are usually just the
standard ones of readsy writes and execute. A generic object is used as
an I/0 ports there is no "real thing" to which the name always
"applies. Generic object names are always tocal and are wused to
associate a Local name (the generic object®s name) with a global
objects Generic objects are used to write programs and processes with
runtime redirectable I/0. A generic object 1is more general than a
generic file because arbitrary operations can be defined on them,y and

users can make their own generic objectse An example of a generic
object might be STDINy a standard 1input port for a process3 STDIN
would probably be associated with a userts terminal by default,. A

composite object 1is a complex object containing more than one object
(subobjects) as its data portion. A composite object could be used
when a number of objects are logically equivalent (eegesy servers in a
service)y when the internal structure of objects must be hidden from
users (es.gesy certain Data Management objects)s or to conglomerate many
small objects into a large one. Composite objects are usually managed
by a separate process called an object manager.

4.2.2 Name Space Operations

Name space operations are used to «creates altery and destroy
abstract objectss which are the sources and sinks (targets) of all data
transfer. Users may create any kind of object they Like. An object is
created by specifying 4dts names the type of objects where the name
resides (local or global name space)y the datay and the operations
including access rightse Removing an object*s name from the name space
causes its destruction.

Fach process can reference objects in the global name spacey which
has the names of all objects that can be referenced system-wide. This
name space is managed by a name space services which is responsible for
maintaining the integrity of the name space across all nodes 1in the
distributec systemy and for resolving names into references to specific
objectse.

Processes will also have a local name space which contains the names
of objects that are known only to that process. Any kind of object can
be in the local name spaces but the most Likely inhabitants are generic
object names. These are Local because the specific binding for each
name (the object it 4s associated with) is different for each process.
Another example of a locally known object is a subobject known to the

MO TYTIA™ NN OE AT T ASYTYEMM™N o ~ 9

~

~

~

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI-S90

object manager of a composite objects the composite objectt®s name
would (most Likely) be globale but the names of the subobjects would be
known only to the object manager.

402.3 Stream_Operations

Stream_operations are wused to createys altery and destroy data
conduits (streams), The operations define the source and sink of an
I/0 streamy and the logical and physical characteristics of the data
transfer. Typicallys physical <characteristics are hidden from the
users while the Logical characteristics are note

The most basic stream operations are associate and open. Associate
is used to "connect"™ names in the (local or global) name spaces in
order to define the path that the data is to take in the upcoming 1I/0.
The command can be used to associate two Local namesy two global namess
or a Local name and a global name. The "connection" operation found in
other system §s less general since it allows only the Last kind of
association.

The open operation is used to define the direction of data flow and
the kind of access. For instancey if the name HERE is associated with
the name ThEREs the stream could be opened for reading from HERE to
THERE in records 80 characters long. In most casessy the cpen operation
should be implicit. That iss associating HERE and THERE and then doing
a read operation on object HERE should implicitly define the direction
of data flow and some "reasonable" kind of accesse.

To summerizes the associate operation is used to define the objects

in the path of a streams and the open operation is used to activate the
stream.

4e2e4 Examples

1« As an example of the use of generic objectsy suppose a typical
PIOS system has an electronic mail services associated with the generic
object name MAILMAN. To send a lettery the user merely writes to the
object MAILMANS to receive his mails he reads from MAILMAN. More
generallys rather than using the standard read and write operations to
receive and send maily special operations "send" and "receive" could be
defined on the generic object MAILMAN. The send operation could do
such things as forwardings returning mail to sent unknown addressess
etce The receive operation could sort dncoming mail dnto separate
files according to who sent themy, delete "junk" itemsy etc. Since
MAILMAN is a Local objectsy a user could customize his mail service by
defining any operations he wishes on MAILMAN., In addition, by
associating the name MAILMAN with some local temporary files he could
redirect the I/0 (while debugging a program that uses MAILMANy say).

PRIMF RNRFEF pPrECTDTAATEDN MY o ~ A

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

2. PIOS I/0 operations <can be wused at command Level or from
programse Typicallys a wuser would associate two object names at
command levely thereby defining the targets of the I/0 to follows The
system at this point would also determine certain physical
characteristics of the anticipated data flows from its knowledge of the
objects involveds The direction of flow and logical access is not vyet
definede Let wus say a user wishes to write 1into a file named
"report_file" using a program which writes 1into the generic object
OUTPUT. He would first <create an association between the generic
object OUTPUT and the file "report_file", The command might look Like:

associate OUTPUT -and Report_file

That OUTPUT is associated with report_file is not significant to the
user®s program since it references only the generic objects OUTPUTS if
he substitutes Printer5 for Report_filey the program will continue to
worke

Programs may also issue association requests. For instance,

call assasnam (OUTPUT, Report_file)

The association merely specifies the endpoints of a datapath} it
does not specify the direction or logical characteristics of flowe ToO
do thiss the user must open the association for some specified Llogical
accesse This can be done at command Level:

open GUTPUT -for logical_access_definition

ore from a program?
call assopen (OUTPUT, Logical_access_definition)

PIOS verifies that Report_filey which is associated with OUTPUTs may be
accessed as requested by the logical_access_definition and initializes
OUTPUT for such accesse. An example of a Llogical_access_definition
might be to open the association for write access using fixed length
records with a record Length of 80 characters. Actuallys it should be
possible for most opens to be implicit. The system should be able to
determine from the physfical characteristics of the objects and the
operations performed what sort of default opening would be reasonable.
This would allow the user to do I1/0 without being aware of logical file
formatsy file unitsy etce

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990
~

The open command completes the definition of a stream. The user 1is
now ready to 1invoke his program and write into Report_file. His
program can say.

call asswrite (OUTPUTy buffer)

LY. ETY e e P o o

Requirements Spec for the Prime I/0 System (PIOS) PE~-TI-9990

S Requirements

In this section we give the high level requirements of PIOS. The
intent here 1is to define the overall design criteria to be used in
later functional and design specificationse. The requirements were

chosen using the goals and the competitive analysise

21 170

ALL I/0 is done to and from objects. These objects are defined
using name space operationss and the datapaths used to do I/0 are
defined using stream operationse Before we discuss proposed 1/0
operationss theny we Wwill discuss name space characteristics and stream
operationse.

5«11 Name Space

The full definition of name space characteristics and operations s
dependent on dinteraction with DSAG. Here we describe the general
features PIOS would expect to have in this designe

PIOS will extend today®s hierarchical name space to include devices
and servicese Links and search lists will be supported. Aliasing will
be provided through the association facilitye.

It will be possible to add subtrees anywhere in the name space.

Users can define their own objects wusing name space operationse.
These operations will dinclude:

0 Create_generic_name - Enter a new local name in the Local name
space and <create a generic object with specified operations and
access rightse.

o Destroy_generic_name - Delete a Local name from the Local name
space and destroy the corresponding generic objecte.

o Create_global_name - Enter a global name in the global name space
and create a (simple or composite) object with specified
operations and access rightse.

o Destroy_global_name - Delete a name from the global name space and
destroy the corresponding gtobal object.

”~

-~

Requirements Spec for the Prime I1/0 System (PIOS) PE-TI-990

o Change_name - Change a local or global name.

The deletion operations will have two forms: a soft delete and a
hard delete. A soft delete will allow recovery of the deleted object
for some (probably small) system defined time after the delete
operations A hard delete destroys the object immediatelye.

PIOS will support simpley genericy and composite objectse.

Objects will be able to span partitionss although subobjects may be
required to be on one paritione.

Files will be allowed to cross partitions.

File elements (contiguous allocatijon of files) will be supported.
Objects will have attributes which can be examined:

o Get_all_attributes ~ Retrieve values of all object attributes.
o Get_attribute - Retrieve value of a particular attributee.

o Set_attribute - Set value of a particular attribute.

These operations would be an extension of current file attributes to
abstract objectse.

Generic objects wiltl be provided for physical devices (eeQes TTY,
PRINTERe MAGTAPEy DISKe etce)e These generic objects will reference
the service for the particular devices The names of specific generic
objects may be different in the final design.

Access to all devices witl be through services. Users will
communicate with services using Interprocess Communication (IPC). The
definition of an adequate IPC mechanism is the responsibility of O0OSAG
(cfe "Dependencies"),

Other services will also have generic objects associated with them
(eegey MAILMANY)e NULL will be the generic name for the bit buckete

In addition, PIOS will provide a large number of predefined generic

objects for such things as command 4nputs command outpute error
messagessy etce

D TMErE MO e YT Y /~ e m — -

Requirements Spec for the Prime I/0 System (PIOS) PE~TI-999¢0

5¢1.2 Stream Operations

User level I/0 will be device independent and run-time redirectable}
user programs need not know the <characteristics of I/0 sources and
targets. This will be accomplished using streams. The stream
operations supported by PIOS will be fully specified in the functional
specification. The types of operations which should be considered are:

o Associate - Associate two targets as endpoints of a stream; the
targets can be any kind of objecte

If @ name is in both the Llocal and global name spaces of a
processy the local name is preferred.

o Disassociate - Remove the association between two targetse.

o List_associations - List all or part of a process®s current
associations,

0 Shadow - Associate one output object with another output Objecte.
This causes a split stream in which the output goes to two places
(one of them a "shadow" of the first).

o Transform - Associate data transformation software with a generic
object namee.

o Remove_transformation - Remove data transformation from a generic
objecte.

0 Open - Activate stream with a particular lLogical access method.

o Close - Deactivate streame.

513 Types_of I/0

PIOS will support record and block 1/03% unpended I/0 will be
provided only through IPC primitives. First we will discuss I/0
operations common to both record and block I/0.

S5¢le3e1 Common I/0 Operations

ALL terminal I/0 will be done using &an abstract terminal type
(Standard Terminal Interface - STIs see "Dependencies™)s users
should not need to know the characteristics of particular terminalse.

™S T ™ ™ NG r~ Y P ™ "V T TP ™ . o N

~N

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-990

-~
1/0 interfaces will be well integrated with language 1/03 this
will eliminate the need for extra layers of software. Files written
using one lLanguage will be readable by other languages.
The I/0 system will be structured such that future use of an 1/0
processor (IOP) can be easily assimilatede.
I1/0 operations supported will dinclude:
o Read - Read item (a block or a record)e.
0 Write - Write item.
o Set_position - Position I/0 targete
o Get_position - Retrieve position of I/0 target.
0 Set_state - Change state (TBD in functional specification) of
I/0 target.
0 Get_state - Retrieve state (TBD) of I/0 target.
0 Get_characteristics - Retrieve the physical chracteristics of
~ an object (such as record type).
Cele3e2 Record 1/0
PIOS will support fixed Lengths varying Llengthy and delimited
records. When the two ends of a stream are connected to records of
different typey short records will be padded and long records will
be truncated. Users will be abte to read the physical
characteristics of I/0 objects (such as block size) so that they can
recognize record type mismatchse,
S5ele3e3 Block Iig
PIOS will support block I1/0. 1In this form of I/0 information is
transferred in chunks equal to the physical bock size. No
formatting of data into records is donee.
~

D TITME DO OFECYTO T /AATE™r ~ o

Requirements Spec for the Prime I/0 System (PIOS) PE=-TI-290

Sele3e4 Unpended 1/0

Unpended I/0 will only be provided in the form of IPC primitives:
0 Send - Send a messagee.

0 Receive - Receive a message.

52 Ease of Use

PIOS will be "friendly". 1Interfaces will be simpley each command
having one well-defined functione. ALL objects will be manipulated
using one interface. The user environment will be as transparent as
possible; ee ges it should not be necessary for a user to do anything

special to access a remote file rather than a Llocal filee However,
PIOS will provide facilities for users who need to operate on a "lLower"
level than most; system transparency does not imply inflexibility.

Where restrictions must be imposed (e. gey the size of files or
directories)s they will be such that they are never encountered by most
userse The extent of these changes is TBD.

S¢3_Compatibility

PIOS must be able to run on all S0-series CPUs and memory
configurationsy and wusing all 50-series 1I/0 controllers unchanged
(unless a hardware design error is found which cannot be circumventeds
in which case a field ECO may be required).

ALl user programs must continue to runy without modifications
recompilations or reloading.

ALL current Primos commands must continue to work as todaye.

No compatibility reaquirements are 1imposed on operator or system
administrator interfaces; there should be a valid technical reason for
any change madee.

It is acceptable that Prime-supplied software which is not part of
Primos be modifieds recompiled or relocaded as part of the PIOS releasee.
Howevers such requirements must be technically Justifiedy clearly
documenteds and called to the attention of the affected groups.

. ™~ Y AREB T™ ™ NS - NP WPy W N e o, ™ -

“

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI-990
'

54 Access _Control

PIOS must in no way reduce the security and integrity of the systeme.
The current ACL system will be extended to dinclude devices and
servicese In generaly all objects will be protected by ACLse.

It must not be possible for a user to compromise any Primos
database. AlL permitted accesses to Primos databases will be done by
procedure call or message transmissiony never by direct memory
references.

Se5_Error Reportina

ALL error messages will be informative and in plain Englishs terse
messagess and unnecessary use of Jargon will be avoidede.

Timely reporting of asynchronous errors is dependent on the
definition of a central error reporting facility (see "Dependencies").
Asynchronous errors may be reported by signaling a condition or by
setting a status variable that a process can interrogate; determining

M vwhich is better must be decided jointly with DSAG. Synchronous errors
will be repcrted by setting a status variable,

S¢6_System Startup _and_Confiqurability

It must be easy to Loade bootsy and configure the systems this
requirement should aid the implementation of PI0OSs a2as well as reduce
administrative headaches in the field, Specificaellyy configuration
must be simpler than todays it must be possible to bring resources on
and off Line dynamicallys The number of coldstart parameters should be
minimized in favor of dynamic allocation just after coldstart. It s
desirable that many parameters (e.ge the number of page maps
available) be variable during system operation.

The current use of physical device numbers will be eliminated 1in
favor of a more friendly and flexible naming scheme. '

Se7_Implementation

PIOS will be written in a suitable systems programming Languages,
such as MODULA 1II. Even if such a language is not avajilable when the
implementation beginss the selected Language will be used in the design
specification of PIOS as a pseudo-code. PMA Will be permitted dinside
the machine dependent kernel where absolutely requireds this
prohibition is especially important because of the anticipated arrival
of the NSP machine. The use of other languages is prohibited.

ODOOTYTMDE phRior Y YTAYCN - -~ -

Requirements Spec for the Prime I1/0 System (PIOS) PE-TI=-990

PIOS will provide a completely new set of subroutine interfaces in
the areas it covers. The detailed requirements on these interfaces are
left to the functional specification of PI0S, but a number of general
ones are given here.

1.

2.

4.

Se

e

Te

Se.

Each interface should have a single purpose (e.ge "create file"
but not "creates deletey or verify existence of file").

The datatype of each argument should not depend on the value of
another argument, In cases where this function is needed (e.ge.
an argument of arbitrary typel)s 2 pointer to the actual data
should be used.

The number of arguments for each interface should be minimizeds
but not at the cost of lLoss of functione

Argument datatypes requiring a descriptor (e.ge. char(x) wvar)
should be used only when reguireds Each such interface must have
a companion writearound that can be called from a Language that
does not support descriptorss such as F77.

"Side effects” will be minimized or eliminated. Wherever
possible programs will be dJsolated from the internal
representation of system data structures;s this means that access
to system common areas will be rigidly controlled through special
modulese

ALL gates (ring 0 interfaces) must work securely even 1if the
value of one or more arguments changes while executing in the
gate.

Machine dependent code will be minimized and 3Jsolated. This
involves specifying a set of machine independent interfaces that
the remainder of the code uses (machine dependent kernel).

To ensure the maintainability and extensibility of PIOS
modularity and structure will be emphasized 1in design and
implementatione Agreed upon interfaces and protocols will be
strictly adhered toe. "Shortcuts" for efficiency will not be
takene.

The code for PIOS will be "self-documenting" as much as possibles
well-commented code will not be a substitute for coherent
external documentation (specificallyy, functional and design
specifications).

~

-~

Requirements Spec for the Prime I/0 System (PIOS)

5.8 Extensibility and Portability

it must
efforts The identification and isolation of machine dependent
should allow this (see #7 under "Implementation™).

It must be possible to extend PIOS to dinclude new

To ensure that PIOS is not made obsolete by architectural
be possible to move PIOS to new CPU families with a minimum of

PE-T

I1-990

functions or

support new technologies (e. ges 1intelligent disk controllersy 1/0
processors) without rewriting or replacing Llarge sections of
ideallys we should be able to just "plug in" new codee The emphasis on
structure and documentation in PIOS design should permit us to get
close to this ideal.

codes

advancesy

code

The definition of a2 machine dependent kernel is especially important

because of the proposed NSP machine.

5.9 Database_Management

Petermining the full requirements of the database
’quoducts is ongoing. Some conclusions have been reacheds
involve other projects or have been deferred pending the results of the

Subobjects are constrained to be on one partition.

management

some i

o It must be possible to restrict objects to single nodese

ssues

I1/0 performance study. Some reqguirements are addressed by items
discussed elsewhere 1in this specification,. Additional requirements
are:

o It must be possible for very large objects to span partitions.

o It must be possible to tell when an object <crosses a network

boundary.

0 It must be possible to replace subobjects with other

subobjects.

0 ROAM must be able to securely manage its objects using name

conventions and serverse.

o PIOS must provide a Large number (TBD) of dynamically alto

file units.
The following items are not the responsibility of PIOS:

0 Management of ROAM objects is up to DM.

PRIMF RNRLF pFoeTDTCOTYTONR

[o B

space

cated

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI-990

0 DM must provide the ROAM object portion of generic copy command.
0 ROAM will continue to do its own recoverye.

o Data management supports a kind of object (keyed access) not
supported in Llanguage I/0. It must be possible for languages to
read keyed access objects using their random and sequential
interfaces. DM must provide support for thise.

”~

Requirements Spec for the Prime 1/0 System (PIOS) PE-TI=-990

6_Comparison_of PIOS with Competition

PIOS corrects the deficiencies enumerated in Section 3.10.

o

Hierarchical name space

PIOS will expand the name space to include network nodesy devicess
and services3 Links and search lists will be supportedes Aliasing
will be provided via the association mechanism for doing
connectionse.

Generic files

PIOS will provide generic objectss a more general feature than
generic filese. Generic objects allow the specification of access
control and non-standard operations on the names defined.

Security and access control

ALl objects will be protected using ACLs. Objects dnclude file,
devicesy and services.

Connection capabilities

PICS will provide very general and flexible connection
capabilities with its stream operationse Full device independence
and I/0 redirectability will be supportede.

One I/0 interface for all objects

ALL types of objects wiltl be referenced using one dinterfaces
namely the PIOS name space and stream operationse.

Recorc I/0
PIOS will support record 1/0.
Block 1/0 and unpended 1/0

Block I/0 is supported today. Unpended I/0 will be done using IPC
primitivese.

PDDITMDD Do AP TYrm Yy rAsyecem . o

Requirements Spec for the Prime I/0 System (PIOS) PE~-TI-990

7 _Dependencies

PIOS has a number of strong dependencies on other groups which
affect both {ts schedule and proposed functionality. 1In this section
we List the dependencies and the groups affected. This List is in
approximate priority orders starting with the most critical
dependencies., However, be cautioned that the last items on the Llist
are still quite important3s the first items are criticale

l. Distributed System Architecture Group (DSAG)
Importance: supercritical

Risk: Cannot complete PIOS functional specifications prolonged
delay of project design and implementatione.

PIOS®*s heaviest dependencies are here. DSAG is involved in for
the design of three critical areas: the hierarchical name spaces
interprocess communications and error reportinge PIOS cannct be
fully specified without DSAG's proposals in these three arease.
PIOS requires that DSAG produce a specification 4in these areas
consistent with the goals and requirements 1in this documente.
Close consul tation between DSAG and the PIOS team is requireds

2. Data management support (Data management/Performance STD)
Importance: critical

Risk: Incomplete functjonal specifications possible dinadequate
designy performance problemse

Data management supports a kind of object (keyed access) not
supported in language 1/0., It must be possible for lLanguages to
read keyed access objects using their random and sequential
interfacese

In additiony it is a goal of PIOS to provide data management
products with favorable functionality and performance perks.

Defining these depends heavily on the data management group®s aid-
in reviewing our proposalss and on the performance task force®s

success in determining where performance enhancements should be
concentratede.

3. Language Llibrary support (Translators)
Importance: critical

Risk: PIOS can be implemented without thisy but performance will
not improves and using the new features will be harder for userse.

-~

~

Requirements Spec¢ for the Prime I/0 System (PIOS) PE-TI-990

Se

e

PIOS will strive to integrate its I/0 operations with Language
I/0 This will eliminate the need for extra layers of software
used to translate language constructs into Prime*s 1/0 mishmashe
Howevery eliminating the need and taking advantage of it are
differents The language libraries will have to be modified to
use the new PIOS interface.

Copy primitives (DM/O0S)
Importance: critical

Risk: PIOS <can be dimplemented without this but not fully
utilizeds Certain wutilitiesy such as MAGSAV/MAGRSTy, will be
affectede.

A generic copy <command must be provided for objectse. This
requires the cooperation of the DM groupe since they will be
expected to provide a copy primitive for ROAM objectse.

Standard terminal interface STI (Networks)
Importance: Very dimportant

Risk: PIOS can be implemented and used without this, but both
would be more difficult. Needed at least for second release of
PJI0S.

Achieving the goal of full device independence and of
representing any user keyboard as a single generic object implies
the existence of an abstract terminal typee. This kind of feature
is being pursued by the STI projecte.

Ring 0 debugger (Tools group/STD)
Importance: Very important

Risk? Implementation will take much Llonger and the resulting
product will be Lless reliablee.

There has Long been a need for a high Level debugger (comparable
to DRBRG) which can be used to debug ring 0 code. This s a
difficult problem because Prime®s hardware protection prevents
the direct use of standard debugging technigques (most especially
breakpointing) except under special circumstances. There is also
the probtem that debugging an operating system on Line implies
the existence of a surrogate operating system which can run
thinos when the experimental software breaks. Despite these
difficultiess two solutions have been proposedsy Oone involving a
two machine system (possibly a P850)y the other an extension of
the Microprocessor Debugging System (MDS). Given the unusual
complexity of the PIOS project (and later the full PDA efforty,
the availability of a high Level ring 0 debugger is essential to
its timely completion.

DD TME RO M0 T 9 s o oy e

Requirements Spec for the Prime I/0 System (PIOS) PE-TI-99¢0

7. Systems programming language (Translators)

Importance: Very important

Risk: Same as for #6,

Like the ring 0 debuggery the need for a powerfuls flexible
systems implementation Language has been Llong felt. Possible
choices include MODULA II and SPL.

Secure data paths (Networks)

Importance: Very important

Risk: A distributed system ==> more network traffic ==> more
security problems == more unhappy customerse PIOS <can be
implemented and used without this.

PIOS will do nothing to reduce the security of Primos and will
attempt to improve ite. Howeveres a distributec computing
environment implies heavy network traffic. Currently there is no

way to ensure that inter-machine transmissions are secure. If
PDA is to be a secure systemy this problem must be solved.

System boot(0S)

Importance: Important

Risk: Same as #6.

The abilities toc boot the system in a single stepsy and to do

partial system builds and loads are very desirable and affect the
schedules

Requirements Spec for the Prime I/0 System (PIOS) PE=-TI=-990

~

8_Non-reguirements

The following are not the responsibility of PIOS:

o]

The design of a full IPC mechanism to provide complete
asynchrony. This is the responsibility of DSAG.

User devices. PIOS does not propose to simplify the addition
new devicese.

Keyed access to files - DM must do ite

IEEE floating point - The problem here is files having both

1/0

of

IEEE

floating point and Prime floating point. Recoagnizing this fact

requires multi-typed files. PIOS will not support thise
Conversion from ASCII 7 to ASCII 8.

Loogging attempted security violationse

PRTITMF RNeF pDreTryprrrrTen -

Requirements Spec for the Prime I/0 System (PIOS) PE-TI=-990

N\

At this stage of the PIOS projecty some proposed design features are
still controversial or reguire more thought. 1In this section we List
the current 1issues and their statuse It is expected that eventually
this section will be deletedy and all fssues will become ejther
requirements or non-requirements.

le Extent of DBMS performance perks - This is still beingc discussede.
Some areas are deferred until the recommendations of the
performance task force are available.

2« Compressed records - The question here is how to handle blank
compression., This 1is deferred until the recommendations of the
performance task force are avaijlable.

3« Magtape lLabels - The question here is what kind of label should
be used 1in device 1independent magtape 1/0. A Marketing
recommendation is needed here.

4. General Lock management and support for atomic operations. Level
of support for transactionse Oiscussions with DM are ongoinge.

Se Version control to support hard/soft crash recovery.

6 Phasing out password directories.

7. Phasing ocut old commends.

8. Features and design of the physical file systeme This is part of
the PIOS projects but full specification must wait for the
recommendations of the performance task forcee

9« Reliabilitys Availabilitys and Servicability - The specification
of specific RAS requirements is deferred pending the completion

of the I/0 performance study.

10. Performance perks - The recommendations of the I1/0 performance
task force are needed to specify thesee.

	Cover Page
	1
	Table of Contents
	2
	3
	Executive Summary
	4
	Glossary
	5
	6
	7
	8
	Motivation
	9
	10
	Goals
	11
	Competetive Summary
	12
	13
	14
	15
	16
	17
	18
	Overview
	19
	20
	21
	22
	23
	24
	Requirements
	25
	26
	27
	28
	29
	30
	31
	32
	33
	Comparison of PIOS with Competition
	34
	Dependencies
	35
	36
	37
	Non-requirements
	38
	Issues
	39

